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ABSTRACT 

The problem considered in this paper is that of finding the heat 

losses from a turbulent gas flowing through a pipe due to free and forced 

convection, conduction through the solid insulation and external wall 

radiation.   Furthermore, along the inner wall, neither the heat flux nor 

the temperature variation is known in advance, but are determined by 

the losses from the outer wall.    The analytical procedure used here is 

analogous to that first used by Latzko (1) and later modified by Fettis (7) 

for a constant wall temperature, where eigenfunctions of an approximate 

equation are fir si obtained and these are then used to obtain the solution 

to the actual heat equation. 

The numerical solution for the case a = 0.7 is presented in the form 

of graphs of axial temperature distribution along the pipe as well as radial 

temperature profiles within the gas stream.   The case where the heat 

transfer parameter a = 0.7 is used corresponds to the specific dimensions 

and thermal properties of the stagnation chamber insulation in the ARL 

30-mch hypersonic wind tunnel.   This tunnel can be briefly described as a 

blow-down type facility which uses a methane-oxygen fired zirconia pebble bed 

which heats the air to the neighborhood of 4400oR prior to expansion to flow 

Mach numbers ranging from 16 to 22 at free stream Reynolds numbers 

approaching 108 per foot.   The axial temperature distributions and radial 

profiles presented herein are for a specific set of conditions under which the 

ARL 30-inch hypersonic wind tunnel has actually operated. 
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2 
a heat parameter defined as — 

7N 

ß parameter which is proportional to the exponential decay 
factor for the temperatura in the axial direction 

r refers to gamma function 

77 ratio of the conduction to radius as defined by equation (7-6) 
under section VII 

0 temperature difference between the local temperature and a 
reference temperature 

9 temperature difference at the inlet of inner tube 

0 mean temperature difference 

X eigenvalues for equation (23) 

v kinematic viscosity 

p density 

YJ referring to a summation 

T local shear stress 

Tp inner wall shear stress 

« eigenfunctions for the approximate differential equation, that is, 
corresponding to the eigenvalues expressed by \ 

a) eigenvalues for the actual heat equation (21-a) 
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I.    INTRODUCTION 

The problem of heat transfer in fully-established turbulent flow in a 

cylindrical tube has been investigated by many researchers (Reference 1 

through 4).   In all cases the flow Reynolds number is sufficiently large to 

justify the assumption of negligible axial conduction in the fluid.   As a 

consequence, the mathematical investigations were reduced to solving an 

eigenvalue problem with the wall temperature taking the form of a step 

function.   Once this was accomplished, other boundary conditions such as 

prescribed heat flux or prescribed wall temperature variation were included 

by the method of superposition, an idea which was an outgrowth of Duhamel* s 

theorem.   This was, to the authors knowledge, first pointed out by Tribus. 

However, there are certain situations in which the use of the superposition 

integral may not be practical.   Such is the case in a cross-flow heat exchanger 

when the wall heat transfer rate is related to an external heat transfer 

coefficient.   In this case, neither the heat flux nor the temperature variation 

is known in advance and the flux must be matched with the wall temperature 

variation.   To accomplish this one needs to know the eigensolutions and the 

coefficients quite accurately near the entrance. 

The practical engineering use for the steady state heat transfer analysis 

and numerical example presented here is that of determining the heat losses 

from a turbulent gas flowing through an insulated pipe.   A cross-section of the 

pipe considered in this study is shown in Figure 1.   Consideration is given to 

finding heat losses due to all three modes of heat transfer with a further 

stipulation that the surface temperature of the chamber is not held constant. 

In the first portion of the paper, consideration is given to solving the 

general heat transfer problem for turbulent fluid flow through cylindrical 

tubes.   The analytical approach for solving the problem is given in the 
Manuscript released by the author April 1965 for publication as an 
ARL Technical Report. 
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following three sections.   The remainder of the paper gives a numerical 

example for the specific case corresponding to the various thermal 

conditions in the stagnation chamber of the ARL 30-inch hypersonic wind 

tunnel. 



n.   STATEMENT OF THE PROBLEM 

The problem is stated as follows:   given the initial temperature 
distribution (with respect to the radial distance) of a fluid entering a 
cylindrical tube through which heat transfer occurs by means of a fixed 
wall conductance, the ensuing temperature distribution is to be 
determined. 

Since the accent of the investigation is on this particular boundary 
condition, the conventional assumptions of constant-property (including 
density) fluid are adopted.   The flow Reynolds number is in the order of 

5 10   and the length-diameter ratio is large so that very little error is 
introducted by assuming the existance of fully-established flow beginning 
at the entrance section.   Ignoring axial conduction, the steady-state 
energy equation with circular symmetry is 

8T       i     a 
- p   C    u   -.       =   ~    -"     (r q   ) (1) p     p       9x r      ar 4r/ v 

where qr is the radial heat flux, positive in the + r direction.   On the 
inner wall r = R, the flux is equal to the thermal conductance Uo 
multiplied by the temperature difference between the inner wall and a 
reference temperature, T   * . Thus, at r =  R: 

Up includes contributions from the wall-thickness, convection 
and external wall radiation effects.   It is assumed that UR is effectively 
independent of axial distance x.   At the entrance, the fluid temperature 
has its initial value 9   (r), that is at x = o 

0 = e0 (r) . (3) 

The equations (1), (2), and (3) for    ,fqM constItuto tho present problem. 
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IE.   ANALYTICAL METHODS 

Currently there are four different approaches toward the solution 
of the stated problem.   They can be classified into two main categories; 
(\) eigenvalue approach represented first by the work of Latzko (1) and 
later modified by Fettis (7), Sleicher and Tribus (2) and Beckers (3),and 
(ii) boundary layer approach typified by the work of Deisler (4) and 
Sparrow (5).   As a general conclusion, the analysis of (4) and (5) based 
on the integral method of the boundary layer equations gives a gross 
picture without a high degree of precision in its numerical results. 
Among the eigenvalue approach techniques, there are three different 
ways of handling the turbulent velocity distribution and the eddy 
diffusivity distribution.   Latzko employed a simplified 1/7 power law 
closed form distribution for the velocity and the total thermal diffusivity 
(turbulent plus molecular).   Sleicher and Tribus used experimentally 
measured velocity distributions and eddy diffusivities.   This resulting 
procedure was to solve the problem for each Reynolds number and 
Prandtl number. 

To use the method given by Beckers, one needs to divide the flow 
into three different regimes; viscous sublayer, buffer layer and 
turbulent core.   In fact, he solved three sets of differential equations 
with three solutions which are joined together with temperature 
continuity only. 

The approach of Sleicher and Tribus appears to be the best 
procedure, but the numerical work for a general treatment is also the 
most time-consuming.   The second best is the Latzko method which 
can be modified for a different Reynolds number range by using 
different power-law exponents in his original analysis.   In view of the 
flexibility afforded by the Latzko* s formulation, a portion of the latter 
approach is adopted in the present problem. 



IV.   ANALYSIS 

Latzko1 s analysis is based on the premise of the power-law distribution 

of velocity near the wall which works quite well in that vicinity.   However, 

since the velocity profile becomes relatively flat near the tube axis, he 

expressed the velocity distribution with the following expression, 

Equation (4) reduces to u ~ Ö n when r is close to R, that isÖ= R-r~o. 

The coefficient "A" is related to the mean flow by a constant factor dependent 

on n. 

For fully established flow, the total (molecular and eddy) shear is a 

linear function of the radius.   If equation (4) is differentiated, one obtains the 

following, 
i-n 

du  _   A_     [R* - r^    n        /^rX 
ar  '   n      \   2Ra  1 VR,| 

or ^ ^ (5) 

nR\    In* -A   n ' r ^u      [ 
8r      \ R 

In general n can take on values of 6, 7, 8 and 9 depending on the various 

Reynolds number ranges considered; hence the velocity derivative exhibits a 

singularity at r =  R, indicative of the fact that the power law expression 

cannot be used at the wall.   However, the quantity on the left hand side of 

equation (5) remains regular at r = R which must be equal to the shear ratio 

(T/T   ), where T      is the wall shear.      Accordingly, Latzko expressed the 
R R 

shear ratio as. 



n-i 

T        -nR 

T 
R 

/r'-R^    n au 
\ aR1 / ar 

Further, he used the Reynolds analogy for a Prandtl number equal to one and 

obtained an expression for the heat flux using n =  7, 

qr «    - const.   I11   :/   |fl  7 ^ (6) fa'  -   r'\6/7  30 

I    2Ra     I Or 

In this manner the temperature derivative is permitted a singularity at r = R, 

but the heat flux as defined by (6) Is regular at r =  R.   Quantitatively, Latzko 

used the following expression for heat flux, 

/       / 8/7 

q =   -0.199V3 V 4pCD      I^A de (6.a) 
r (2R)3/" I   2R   / * 

and In the presently used notation, q   is expressed as 

With the constant A In equation (4) evaluated for n = 7, the velocity Is 

expressed as .- 
fl-r1 

I   Rl u=   5   V   (^V-J (8) 

Introducing the non-dimensional variables f  =(-\   x  =|-iandthe 
/ v        \R| lr) 

temperature difference as  6 , equation (1) reduces to 



3x        r     9f    I 9rJ 

where p= (iiLl^llRe 'A 
7x0.199 

(9) 

(9-a) 

The boundary condition at r =  R is qp =  Up (T - T   ,)   or 

- 0.199  -_    k„ P, R    *'*   [l - R.  V* f2 
*/7    "a H? =  UR (T - Tref) 

for r =   1, 

I (1 - r2) fl/7    -^ +  No =  o 

where *W 
r = 1 

Re 
-3/4   I 2iyi 

0.199 

(10) 

(U) 

The temperature distribution at x  =  o, becomes 

0 =  ^0 (f) (12) 

where 0    represents the temperature difference at the inlet of the pipe. 

A second condition must be satisfied which demands that the centerline 

temperature be finite.   This second condition will be given after another 

change of variables is made and substituted into equation (9). 

A solution to equation (9) is assumed to be of the form, 

0 = expfe-jL] g (?) (13) 



Substitution of equation (13) into equation (9) yields the following 

-p' (l-f),/tg= i ^ \r (l-fJ)'/' &] 
f  dr L drJ 

Introducing the change of variables 

(14) 

z7  =  1 - r - u (15) 

equation (14) becomes 

d_ 
dz 

(l.zM^.l + [^l|zT 

and equation (10) is written as: 

g=  o (16-a) 

2_   dg 
7N  dz 

+ g  = o 
z =  o 

(16-b) 

The second condition, mentioned previously, is to satisfy equation (16-a) at 

z =  1 or the centerline.   Because of the singularity at z =  1, it is necessary 

to require that g be finite at z =  1.   The system described by (16-a) with 

proper boundary conditions is a regular Sturm-Liouville   system solved as 

an eigenvalue problem.   The o thogonality relation given below is readily 

established, 

/o  z7 gn ^ gm (z) ^ = o for m ^ n (17) 
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The Initial conditions are satisfied by putting 

0 = l\ ^(7-   *)  gn(z)   ' (18) 

where the coefficients An are determined from n 

A   =   i o  z7  go gn (z) dz 

J o z7  gn   (z) dz 

and 6Q is defined at x = 0, or ö0 =  6 (z, 0). 

(19) 

4 
(20) 

then equations (16-a) and (16-b) respectively reduce to 

L   [(l-z7)   ^1+ wz1 

dz   i dz 
g = o (21-a) 

Evaluating at z = o, and for convenience in later computing the equation 
o 

involving gamma junctions, letting — = a, we have 
7N 

"(4=.* g = o (21-b) 
z =  o 

Solutions of (21-a), which satisfy the condition stipulated at z =  1 and also of 

equation (21-b)   will c^ist only for discrete values of the parameter u> as 

indicated in equation (21-a).   Once these eigenvalues have been found, the 

complete solution of equation (9) will then be of the form 

9 



^Angn (z)expr-^L-    Jj (22) 

Before considering the solution of (21-a), we wish to consider the 

solution of an auxiliary equation which is similar in appearance, although 

not identical, to equation (21-a), that is: 

5L  [(I . z' ) <!*] =    - X z5 g (23) 
dz  L dzj 

A change of variable z7  =t converts equation (23) to the following 

t(i.t)4   +   *    .Ü1    5*   +JL   g.o (24) 
dta      I 7 7     j   dt        49 

A similar equation results if we consider still another change of variables, 

this being 

y =  l-t 
(25) 

and dy =  -dt 

Then equation (24) becomes 

yd.y)   <ÜlL    +fl-l?^   ^    +^g      =    o (26) 
dya       \        7    / dy       49 

Equations (24)and (26) are in the form of the hypergeometric equation 

£lL Jc- y (1 - y) ^f i   c - (a + b + 1) y 
dt 

^  -abg-  o (27) 
dy 

Equation (24) is useful when obtaining solutions for a =  o and «.   When 

Q =  o, then ö=o which corresponds to Latzko* s solution to the heat transfer 

10 



problem, also, when Q = «, the solution corresponds to the case pp = o. 

For the case of qR = o, a meaningful expression for the temperature at 

x = o must be prescribed, that is, 0   cannot be independent of the radius. 

Also, a solution is sought such that the initial inlet expression for 6   is 

successively "damped out. "   For all other values of the parameter "aft, 

we must obtain solutions to equation (26). 

With the aid of equation (27), comparison of coefficients a, b and c can 

be made which are used in equations (24) and (26).   For equation (24) we obtain 

the following; 

ab = 
49 

b=      ^  -a (28) 

c=      ? 
7 

while for equation (26), we obtain 

ab=   "A. 
49 

b=      «  -a (29) 

c =      1 

For the general case, equation (27), which includes a =  o and  a = oo, two 

linearly independent solutions are 

11 



gx =  F (a, b, 1, y) (30_a) 

8,=   F,^ b, 1, y)ln  y (30_b) 

but because of the requirement that g be finite at z = 1, only the solution 

(30-a) is admissible.   Hence, except for a multiplicative factor, the desired 

solution of (27) is 

g =  F (a, - - a, 1, y) OD 

The value of "a", and therefore x, is still undetermined, and must be so 

chosen that the boundary conditions are satisfied. 

From the known formula for the derivative of the hypergeometric function 

called " F" 

5*?   =5^   F (a +  1, b +  1, c + 1, y) (32) 
dy c 

the derivative of (31) can thus be written as 

') 

d£=  a|^  -al F (a+  1, *!   -a, 2, y| (33) 
dy 

At y =  1,-8  is singular.   However, the boundary condition is given in terms 
J^        dy 

of rfe, and since y =  1 - z  , we find that 
dz 

dg  = 5fe    djr  =    . 7 zfl   ^S (34) 

dz       dy     dz dy 

12 



Equation (33) can now be written as 

4 = af^  - a] F(a +1,   H   - a, 2, 1 - z7] (35) 
dy 

Now the appropriate general expression for the function F is the following: 

F (a, b, c, y) = r (c) P (c - a - b) F (a, b, a + b - c + 1, 1 - y) 
F (c - a) r (c - b) 

+   (l-y)Cab r(c)r(a + b-c)F(c.  a( c.b, c-a.b+ 1, 1-y) 
r (a) r (b) 

(36) 

where y = 1 - z7 . 

Hence, 
a 

F(a+ i,13,a,2,y)s
r(2)r('T) F (a + ltll-*t™J) 

7 r(l-a)r(i+a) 7 7 

7 

r(2)r(|) 
+ z'6     LÜ       F (1 - a, i + a,   1, z7 ) (37) 

fH rCa+Dr1"    -1 7 7 

Substituting (37) into (35), one obtains the following: 

HH r(2)r(-l-) 13       13    , 
F(a+  l, H -a, li, z7) 

r (1 - a) r (1 + a) 7 7 

+ z-, 
r (2) r (f) . -    ,   , 
 2   F (1 - a, i   + a, i, z7 ) V (38) 

r (a+ 1) r(i2-a) 7 7 

13 



But 

^= ^g   ^=    .7z6     ^ 
dz     dy   dz dy 

hence, 

6 limdc       7Q,C      .          r(2)r(y) 1 1 :=a =   - 7a (-  - a)    *  F (1 - a, i + a, -, o) 
^  dz 7 r(a+i)r(13.a) 7       7 

(39) 

At the origin, 

F(l-a, 1  + a, i, 0)=   1 

Therefore 

-7 r (2) r (4) lim dg=       ' A  ^ A  v ^— (40) 
z-o   dz r (a) F (- - a) 

At z =  o, equation (31) becomes 

g (o) =  F (a, ^ - a, 1, 1) (41) 

where 

F (a, b, c, 1) =    T (c) T (c ■ a - b) (42) 

r (c - a) r (c - b) 

We now obtain from equation (21-b), with the aid of equations (41) and 

(42), the relation 

H • -] r{a)r|(S -a)l r(i-a)r(l+ a) 

14 



Thus admissible solutions occur when "a" is such that 

r(X) r(a)r^-a) 
Q =      3 3  (44) 

7r(i-a)r (A + a)r(|) 

The values for x corresponding to values of "a" which satisfy equation 

(44) can then be obtained from the formula 

X -  - 49 ab-  - 49a(-  - a) (45) 

For values of a  other than zero or infinity, the eigenfunctions of 

equation (23) may be obtained in the following form from use of equation (31): 

6n^= An F(an^  -an. 1. l-z7)= An *n (z) (46) 

The functions f   (x) are orthogonal with respect to z5 as weight factor, 

that is 

Jo **   £m (z)  fn  (z)  dz = o, if m /^ n (47) 

ana 

/o z5   C ^  =   /o  z5[F(an'?  -an' l   1-zT)l     dz=  Cn   ^ 

For application to equation (21-a)   it is convenient to define a new set of 

functions *     (z), for the solutions of the approximate equation (23) such that 

L  (z) 
*     (z)=     a ■  (49) 

nw    n 

15 



and 

^n   /^   z5 *«,  (z) *«  (z) dz = ö ^^ (50) n   ^ o m n mn x    ' 

where 

Ö ^„ =  0, if m ^ n; and mn        ' '     ' 

Ö «,„ =   1, if m =  n mn 

Now, if we assume a solution of the form 
S 

g (z) = £   Bn  *n  (z) (51) 
n= 1 

and substitute this expression into equation (21-a), we obtain 

d * 

jMi1-8''ir^2'*»]- » 
and because the *   's satisfy equation (23), this becomes 

i^- z5 *Ä  (z) - or   z7   *„ (z) n n n 

(52 

=  0 (53) 

Thus equation (51) is the desired solution to equation (21-a). 

To find the coefficients B  , we require that the left hand side of this 

equation be orthogonal to the *   for n =  1, ..., S . 

This implies the following, 

S 
Z    Bn     ( Ö r^n   " ^n   AmJ   =     0;      HI =    1,    . . . ,   S (54) LJ    n       mn      n    mn ' ' 

n= 1 

16 



where 

Amn =   So z7   *m (z)  *n <z> ^ (55) 

The characteristic equation of the system (54) is 

ö       - cü    A mn       n     mn =  0 (56) 

and the roots of equation (56) give approximations to the first S eigenvalues of 

equation (21-a).    Further, with each u    there is associated a set of B's, and 

S 

linear combination   ^    Bn   *n ^   is an aPProximation to the corresPondinS 
n=i 

eigenfunctions of equation (21-a). 

17 



V.   NUMERICAL SOLUTION FOR THE SPECIAL CASE  a =   0. 7 

The specific value of a to be introduced at this point is taken to be 
that corresponding to the conditions in the air stream at the inlet to the 
stagnation chamber of the ARL 30-inch hypersonic wind tunnel.   For the 
special case treated in this report, a specific set of conditions has been 
chosen which corresponds to tunnel operation at approximately Mach 20. 
Therefore, the conditions to be used in the subsequent numerical analysis 
to describe the gas at the pipe inlet are given below, while the derivation 
of the coefficients for free convection, outer surface radiation and 
conduction from insulation will be shown in the next section.   The conditions 
at the pipe inlet are the following: 

Plnlet =   P^ssure at pipe inlet =  2000 psia 

Tinlet  =    temPerature at PiP6 ^^   =  4000 R 

m =   air mass flow = 0. 53 lb mass/ sec. 

-3      2 A =    inner cross-sectional area of pipe = 3. 068 x 10    ft. 
yt =   dynamic viscosity =  480 x 10"   lb mass 

(sec) (ft) 
C =    specific heat = 0. 30 B Tu 

(lb) (0R) 
p =   air density = 1. 35 lb/ft«* 
V =   average airstream velocity = 128. ft/ sec 
Re        =    Reynolds number =  2. 2515 x 105 

For  a =  0. 7, the first four values of "a" which satisfy equation (44) are 

a      =    1.2862 
i 

aa    =    2.4374 (57) 

a      =    3.5195 
3 

a      =    4.5695 
4 

Using these values of "a", one can now obtain from equation (45) the 
values of X   corresponding to the values a    — a  .   Also the eig enfunctions 

18 



f   for equation (23) may be obtained by making use of equation (46).   Making 

use of the orthogonality relationship given by equation (48), we can obtain 

the coefficients C   which are used in equation (49) to obtain the     * ' s. 

We can now proceed to obtain the eigenfunctions g   (z) by use of equation (51). 

But before equation (51) can be solved explicitly for g   (z) the eigenvalues 

u)    and coefficients B   must be found.   These can be obtained by solving 

equation (53).    Because of the orthogonality requirement stipulated by 

equation (53), use of equations (54) and (56) must be made to obtain the 

coefficients B   and  u>   .   The roots of equation (56) give approximations 

to the first MS " eigenvalues.   Making use of these eigenvalues and 

equation (54), we can obtain the coefficients B .   With the coefficients B 

and *   calculated, we can now find the eigenfunctions g   from equation (51). 

Before the complete solution for 0 can be expressed, the constant A   must 

be solved explicitly by making use  of equation (19).   Having obtained the 

coefficients A     we can now write the complete solution for 9 as given by 

equation (18). 

Using the values of "a", and the procedure as outlined in the above 

paragraph, we can now obtain the eigenfunctions g   (z) of the original 

equation (21 - a) in terms of the eigenfunctions *   (z) of equation (23). 

Making use of the IBM 1620 and 7090 high speed computers, there resulted 

the following  OJ  and g   (z) when a =  0. 7. 

U)        =    30.689 
i 

«i 
0.99830 $     +    0. 05.50 $    -   0. 00988   4>     +    0. 00418   * 

1 S 3 4 

w        =    232.436 

g        =    -0.05431    *    +   0.97860   *    +    0.19690   *     -0.02516   * 01 113 4 

a>        =    581.542 
3 
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g        =    0.01776   *     -   0.17540  *    +    0.92100  *    +    0.34750   * 
^3 1 > 3 4 

u)       =    1196. 131 
4 

g        =    -0.01249   *     +    0.09104  *    -  0.33610  *    +    0.93730  * (58) 

In the special case whei a 6 , the initial temperature distribution, is 

taken as a constant, the solution expressed analytically by equation (18) can 

now be written as the following: 

1. 286 expllll xj 10.99830   «     +  0.05750   *    -   0.00988   *     +   0.00418   *! 
\pR     )L 1 a 3 4J 

-0. 399 expH^Jclf-0.05431 «>i   +  0.97860   *a +  0.19690 *3   - 0.02516 *1 
1   = \pR  /I ' 2 3 J ( 

+ 0. 265 exptiL ^ [o. 01776 *i   -   0.17540  <i>a + 0.92100 *3   + 0.34750 *J 

-0.217 exp|l^l_xj Lo. 0^249   *i   +   0.09104   *a  -  0. 336100 *3+  0.93730*1 

the 
pR 

are as follows: 

PJ s 0.3906 
pR 

PI = 2.9583 
pR 

r 3 —a 7.4015 
PR 

Pi = 15. 2236 

(60) 

PR 

The eigenfunctions $   are shown as a plot of z versus * in Figures  2, 3, 4 

and 5. 

20 



VI.    CALCULATION OF TEMPERATURE DISTRIBUTIONS AS FUNCTIONS 
OF RADIUS AND AXIAL DISTANCE DOWNSTREAM 

1. Introduction 

Once the explicit solution for temperature difference "t?" is obtained 

from equation (59), we can proceed to find actual temperatures as functions 

of radius and distance.   It is more useful to the engineer to have the results 

expressed as temperatures rather than temperature differences. 

To obtain the temperature as a function of location, all three modes 

of heat transfer should be considered simultaneously.   In view of the 

different laws governing the three modes, namely: conduction, radiation, 

and convection, an exact solution is extremely difficult it not impossible. 

In the situation of heat transfer through pipe insulation, one can obtain 

reasonable results by treating all the above named processes independently. 

We wish to give a simplified engineering approach for the solution of such 

a problem by making use of the data obtained in the previous section.   The 

stipulation that the temperatures and temperature gradients be continuous 

between any two surfaces exchanging heat is made in obtaining the final 

results. 

2. Simplified Engineering Analysis 

By requiring that the temperature and temperature gradient be continuous 

between any two surfaces exchanging heat, we are able to obtain analytical 

expressions for the centerline, inner and outer wall temperature 

distributions explicitly.   The geometry of the cylindrical chamber cross 

section being considered herein is made up of n - concentric layers of 

different insulating materials of various thicknesses as shown in Figure 6. 

The  procedure for matching the  regional  temperature  gradients 
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and temperatures between any two surfaces exchanging heat will be 

described in the next sub-section. 

3.   Matching Techniques 

With a known expression for "Ö M, and a given reference temperature, 

the appropriate formulae needed for obtaining surface temperatures will 

now be derived.   At the inner wall shown in figure six as region (2), we 

proceed to equate the temperatures and temperature gradients of the 

fluid tangent to the solid wall and the wall itself.   This can be expressed 

analytically by the following; 

Av = ^s» 
BT      =   BT gw ± 

(6-1) 

Aq^  +   BT^  =  Aq8l  +  BT2 

Now, the heat flux q      can be expressed by the following equation, gw 

V=hD(T-T     )=h(T    -T)=hT>ö (6-2) gRv   c       gw7        gv   c       a7        gR v    *' 

with h p defined in appendix B. 

Rewriting equation (6-2) as, 

V - hg (Tc - V =o (6-3) 
and also after subtracting  BT   from both sides of equation (6-1), one obtains, 

Aq^ +  B (T^ - Tc) =  Aq^ +  B (T. - Tc) (6-4) 

Equating coefficients  A  and B from equation (6-4) to those in equation 

(6-3), one finds that, 

A =   1 and B =   -h 
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Therefore, 

qc   +  h   (T    -T )=  o (6-5) 

From the solution of the steady state conduction problem, we have the 

following familiar flux equation, 
k      IT - T l 

q     = eff L»     iL=      l!L    (T-T) (6-6) 
S2 /r \ «2i r 

From equations (6-5) and 6-6), we obtain the following important relationship 

between forced convection and overall conduction, 

JL.   (T   - T ) =  li   (T    - T ); (6-7) N     » 1 ' g C 2'* 
2 

or at region (2) we have the temperature difference Mö M expressed as 
hcrr 

(Ta-Ti)=   -JL±  (Tc.Ta). (6-8) 

The same analogy can be used to obtain expressions for temperature 

relationships between heat conduction, free convection and radiation at the 

outer surface of the pipe.   Equating the gradients and temperatures of the 

outer surface of the pipe with a given reference temperature some distance 

away from the surface, one can use the equations for continuous flux and 

temperature similar to equation (6-1) 

A%i   =   A(la 

BT      =    BT ^6"9^ i a 

The flux  q_ immediately tangent to the outer surface of the cylinder, can be a 
expressed as, 

la - fi (Ta - T^) =  o (6-10) 

23 



Performing the same type of manipulation here as for obtaining equation 

(6-5), we obtain the formula for external wall flux, 

But we know that the expression for q     is 

qSl =    -    keff (^-T)»   ^-(T^T) (6-12) 

r.   ln|iil 

Substituting for q     from equation (6-12) into (6-II), we obtain the following 

relationship, 

If equations (6-8) and (6-13) are now combined, we obtain 

r    h, (T    - T )  =   r    h  (T    f - T ) (6-14) 2    g x   c       a i rei        i' y       ' 

or 
r  h 

2 S- 0   =    T    . - T (6-15) 
r 

i 
fi ref 

We wish to express the temperatures T , T , and T   as function of the 

parameters h , h  and rj   as well as the radii r , r , and temperature 

difference 9 .   These relationships in algebraic form are, 

Ti=Tref-(^)(^e (6-16> 

T  =  T   - r   |l£-| 9 (6-17) '  =  T   - r   |-!lS-1 
3    '   'VW 

T^ =   Ö +   T (6-18) 
C a 
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After some further manipulation of equations (6-16), (6-17) and (6-18), 

we obtain the following useful formulae for the temperature. 

c        ref 

or 

c        ref 

and denoting the portion in the brackets as coefficient "c '* we have 

Tc =  Tre{ +  ci   9 (6-21) 

We can also express the temperatures T and T   as follows, 

Tt =  Tre{ - c, B (6-22) 

where c  is, a 

•=(*)(-^b 
and for T    the following: 

i 

T   =  T       - c   0 (6-23) i ref      3 

with c   expressed as, 

m c3 = Li\\-& 

To obtain actual temperatures, the coefficients h, k **, etc. must be defined 

and expressed analytically.   For the special case where the value of the heat 

transfer parameter a was 0. 7, the formulae for the coefficients mentioned 

above are given in the Appendix.The results obtained for the case Q =  0. 7 

are presented  (Figs. 9- 11) as plots of axial temperature distribution along 

the pipe.   Some radial temperature proiües at specific axial locations are also 

presented (Figs.12-15). 
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VII.    CONCLUDING REMARKS 

1. The plot of X   ,  (JJ    versus a, shown in Figure 8, indicates that 

the exponential decay of the temperature along the channel increases 

steadily, at first rather slowly up to Q =  0. 5   then quite rapidly until 

the asymptotic value (Q =  oo) is reached.   This trend is the same for 

equations (21-a) and (23). 

2. The accuracy in approximating the uniform radial temperature 

distribution at the pipe entrance is dependent upon the number of 

eigenfunctions used.   With only four eigenfunctions, the accuracy was 

poor near the wall but excellent near the centerline.   However, the 

accuracy of the radial distribution at the wall improves considerably 

at subsequent axial positions. 

3. For the numerical example chosen, the fully developed thermal field 

is attained when the gas has passed through 136 tube diameters.   Also, 

the centerline temperature dropped rapidly from its maximum value in 

96 tube diameters, then asymptotically approached a minimum value, 

while the corresponding radial distribution became uniform. 

4. In the axial direction of the fluid downstream, the temperature 

distribution becomes less and less dependent upon the higher eigenfunctions. 

This implies that to obtain a first approximation to a very complicated 

heat transfer problem, one need only to make computations using the first, 

or at most, first and second eigenfunctions. 

5. In using the eigenvalue - eigenfunction approach when obtaining 

approximations to the solution for the heat transfer equation, some inherent 

error exists in the (n - 1) and n     terms of the hypergeometric series.   The 

effect of the error from approximating the last two terms is noticed only 
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when approximating a uniform temperature function at the entrance 

section. 

6.   The axial and radial temperature profiles, as presented in 

Figures 9 through 15 inclusive, may be considered reasonably accurate 

for engineering purposes.   One reason for any inaccuracy in applying 

these results would be that near the entrance section the velocity profile 

may not be fully established at the actual thermal t trance section. 

The analysis contained the assumption that the velocity profile was fully 

established at the thermal entrance section. 
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4 

APPENDIX 

In the heat transfer from the outer wall of the cylinder to a 

surrounding gaseous medium, e. g. air, free convection and external 

radiation are the contributing factors in calculating the temperature at 

the outer surface of the cylindrical wall.   The two contributions to the 

heat transfer due to free convection denoted as h  and that due to 

radiation defined as h   are additive as a first approximation.   Therefore, 

the heat flux q may be written in the following form, 

q =   (hc +  hr) (T   - Tref) (a) 

The resultant coefficient used in section VI as h is defined as, 

h =  hc + hr . (b) 

The formulation used for obtaining the coefficients h   and h   respectively 

are given below 

h   D i 
-S =   0. 372 Gr 4 (c) 
kref 

where, 

D =  diameter of the cylinder, 

G^ =  Grashof number r 
k   , =  thermal conductivity of the gas surrounding the outer wall 

Equation (c) is now written as, 

h   = k   f   1513721   J 
c       ret       p. r 

or, r ii_ 

h = k f isjm Jg (r--T"*)D I7 (<« 
c        ref       D        | T    v* * 
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where the Grashof number is defined as 

„        f"5.   «refD3 

r 

P    =   i   , g=   32.2 ft 
j        T 

1 
sec2 

and 1/ is the kinematic viscosity of the surrounding gas.   The term 6    * 

is defined as the temperature difference between the two surfaces 

exchanging heat. 

A further simplification of the coefficient h   is, 
% 

hc = kref 
(0. 375) 

i 

o1 

(T   - T    .) g v  i       rer 
T      i/2 

i 

i 

4 

(e) 

The radient heat transfer coefficient "h " used in the problem is given 

by the formula, 

hr = 
1   + 

AI 
I     A C 

[ 
T:  + 

T:   Tref + T   T    , +  T3  , i    ref        ref 

108 
(f) 

n n 

where, 

C =  the exchange coefficient =  108 a € 

a = Stephan Boltzmann constant 

€ =  emmisivity 

A, =  cylindrical area 

ATT =  surrounding room area 11 A    # III Since the ratio of A, to A-, is small, the term — j - 

neglected. * 

is 
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Now equation (f) can be written as the following 

/T3 ^   T2 T    , + T   T*     + I   i        i      ref        i    ref 

\ 108 
hr =  . 173 \-~t J i^ i-^ ^-i W 

10l 

Formulae  d  and f added together gives us   the coefficient h which was 

previously defined as 

h =  h   +  h . can now be written as c       r' 

-      (0- 372) (kref)      jg^-T^r 

D4 I       ' 

iT3   +    T.    T            +    T      T2          +    T3 

J J £ef L_£rf £ef_> (h) 

108 

The standard formula used for the over all thermal conductivity of the solid 

layers of the cylinder (see figure 7) is 

Km = i   ln(-l+  -   fm^ . m^- 1+ (0 mr      K        VD /       K    I     D D     / 
m     \  i* m\       2 3/ 

i s 

K       ID I     K       ID 
m       »4/ m       \  5( 

3 4 

where the thermal conductivities are given for the following materials 

K      - dense partially stabilized zirconia m r J 
1 

K       - cubic zirconia 

K       - fiberfrax 
3 

K       - steel m 
4 
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To calculate the unit thermal convective conductance h „, a ratio is 

set up of the amount of heat transferred per unit length of wall surface 

for the mixed mean temperature difference at the cross section; that is, 

V = T (j) 
m 

From the shear relationship, one can arrive at the following equation for 

q=   0.176 V1   pC     ^    'lm    ^   6' (k) 

where Ö  represents the radial difference (R - r) in the fluid portion of the 
i    rR 

cylinder.   The average temperature 0_=     \     Ö 2 ir r d r. (1) 
m      TTR2   JO 

With the help of aknown temperature distribution (9 ), h   can now be 

computed anywhere downstream.   Putting into the formula for h   the 

analytical expression for q    and ö
m, we obtain. 

0. 176 V4   p C 
3 J_ 

6 

e 7 

hgB 

p3   28 

1/4      Tlim     30 (m) 

1 
77 R2 r Ö (r) 2 TT r d r 
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SECOND EI6ENFUNCTI0N $2 FOR ^ «0.7 
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THIRD EI6ENFUNCTI0N $3 FOR^ «0.7 
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FOURTH   EI6ENFUNCTI0N   $4 FORol «0.7 

z.u 1 

1 

p—^Ä^ 
i^^"-^ 

1 

fk 

i 
i 

\\ 

i 

\ 

|         I 

1.0 

f          ^ s 
1 V 

1 N k-. 
1 

N i 

> 

\ 

i 1 
1 A 

0 ^ w )A wmmmm^ 

\A J n 
\\ J\ .y I^T 

-1.0 1 1 1 

i 

i i 

| 
: 

-oni i      i 

i 
i 

0.5 

FIGURE 5 

1.0 

87 



PROBLEM GEOMETRY FOR THE 

SPECIAL CASE  «^ 0.7 
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DIMENSIONAL CROSS-SECTION OF THE 
STAGNATION CHAMBER 
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EXTERNAL WALL TEMPERATURE 
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INNER WALL TEMPERATURE DISTRIBUTION 
VERSUS AXIAL DISTANCE 
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CENTERUNE TEMPERATURE DISTRIBUTION 
VERSUS  AXIAL DISTANCE 
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RADIAL    TEMPERATURE    PROFILE 
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RADIAL TEMPERATURE PROFILE 
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RADIAL TEMPERATURE PROFILE 
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RADIAL TEMPERATURE PROFILE 
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